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Abstract

Extreme heat imperils health and results in more emergency department (ED)
visits and hospitalizations. Since temperature affects many individuals within a
region simultaneously, these health impacts could lead to surges in healthcare de-
mand that generate hospital congestion. Climate change will only exacerbate these
challenges. In this paper, we provide the first estimates of the health impacts from
extreme heat that unpacks the direct effects from the indirect ones that arise due
to hospital congestion. Using data from Mexico’s largest healthcare subsystem,
we find that ED visits rise by 7.5% and hospitalizations by 4% given daily max-
imum temperatures above 34◦C. As a result, more (and sicker) ED patients are
discharged home, and deaths within the hospital increase. While some of those
hospital deaths can be directly attributed to extreme heat, our analysis suggests
that approximately over half of these excess deaths can be viewed as spillover im-
pacts due to hospital congestion. Additional analyses also reveal an increase in
the share of deaths occurring outside hospitals, consistent with congestion-related
health harms arising from the discharge of sicker patients from the ED. Our find-
ings highlight an important new avenue of adaptation to climate change. If hospital
congestion contributes to excess health damages from a changing climate, then ex-
panding labor and capital investments and improving surge management tools can
help reduce those damages.
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Introduction

Extreme heat imperils health, increasing both morbidity and mortality (Deschenes, 2014;

Basu, 2009), and results in more emergency room visits and hospitalizations (e.g., Gould

et al., 2024; White, 2017; Fritz, 2022). Since temperature impacts many individuals

within a region simultaneously, these health impacts could lead to surges in healthcare

demand that generate hospital congestion. Hospital capacity constraints may lead to

hospitals turning away some patients that require care and may also generate spillover

effects for other patients within the healthcare system given the need to spread scarce

resources across a larger number of patients. In this paper, we provide the first explo-

ration of the health impacts from extreme heat that unpacks the direct from the indirect

effects that arise due to hospital congestion.

Understanding these impacts matters because, unlike idiosyncratic shocks to health-

care demand, we know that climate change will make those shocks associated with ex-

treme heat far more common. Indeed, health-related costs are already estimated to be

the largest component of the economic consequences of climate change (Carleton and

Greenstone, 2022), and spillover effects will only make those numbers larger. Moreover,

the existence of spillover effects is likely to alter our understanding of the distributional

impacts of extreme heat and climate change. Those groups directly susceptible to the

harms of extreme heat may look very different from the groups harmed by diminished

care in other parts of the healthcare system.

This discovery also highlights a potentially important new avenue of adaptation

to climate change. If hospital congestion contributes to excess health damages from a

changing climate, then expanding labor and capital investments and improving surge

management tools can help reduce those damages. The benefits and costs of these

investments relative to the protective effect of residential air conditioning (Barreca et al.,

2016) will clearly depend on the context. Expanding healthcare infrastructure may be

a promising climate adaptation strategy in developing countries, where residential air

conditioning is much less prevalent and electricity reliability is a concern. Furthermore,
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health system expansions may offer considerable co-benefits in settings where healthcare

demand far outstrips supply.

Our empirical work focuses on Mexico, and particularly on those persons with

public insurance (Seguro Popular, henceforth SP) and the uninsured. Studying this set-

ting is relevant, since evidence on the relationship between extreme heat and health in

developing countries is much more limited (Sapari et al., 2024). Moreover, like many

other developing countries, health staffing and infrastructure in Mexico are quite con-

strained, particularly in the facilities where patients with SP seek care.1 Furthermore,

the incidence of extreme heat days under climate change in Mexico is likely to be dispro-

portionately high relative to the number in countries in higher latitudes (Pörtner et al.,

2022; Murray-Tortarolo, 2021), underscoring the potential welfare and policy implica-

tions of our findings.

Our primary analysis covers nearly 57% of the Mexican population over an 8-year

period. In particular, we employ data on the universe of 2012–2019 emergency depart-

ment (ED) and hospital visits to Mexico’s Ministry of Health (MoH) hospitals, which

serve patients with public insurance under SP and uninsured patients. We use these

data to examine the impact of temperature on hospital crowding, patient transitions

within the healthcare system, and patient outcomes. Vital statistics data for the en-

tire population supplement our core analyses, allowing us to examine mortality outside

of the hospital. Using the exact date from patients’ admissions and discharge records

and the municipality of each facility, we link health data to weather data to estimate

distributed lag models of temperature impacts. Our core econometric analysis relies on

a nonparametric binned model specification for temperature that includes facility fixed

effects as well as fixed effects to capture seasonality, intraweek patterns in admissions,

and municipality-specific trends.

Our analyses reveal a series of interesting, interconnected results. To begin, we
1Mexico has a multi-tiered healthcare system where people seek care in different facilities based on

their insurance coverage. SP, currently under restructuring, was the largest healthcare provider in the
country during our study period.

2



find that higher temperatures increase ED and hospital admissions. When the daily

maximum temperature reaches the highest bin of >34◦C, we estimate an additional 3 ED

visits compared to the number under 22–24◦C. From a mean of approximately 40 daily

visits, this translates to a 7.5% increase. The corresponding figure for hospitalizations

is 0.5 additional admissions, an approximately 4% increase. These results are consistent

with prior literature in different contexts (e.g., White, 2017).

The gap between ED and hospital admissions motivates a deeper investigation of

transitions within the healthcare system. Our examination of ED discharges is illumi-

nating in this regard. While the absolute number of patients admitted to the hospital

from the ED increases, that increase is small, such that the probability that any given

patient in the ED is admitted to the hospital decreases. It appears that direct hospital

admissions due to extreme heat create congestion within the hospital that limits its abil-

ity to admit ED transfers. This congestion, in turn, appears to push the ED toward its

capacity constraints, leading to more patients being sent home on extreme heat days. A

similar phenomenon happens within the hospital, with more patients being discharged on

hot days, suggesting that hospitals respond to this congestion by decreasing the length

of stay.

The astute reader will note our choice of the word ‘seems’ when offering congestion

and capacity constraints as the mechanism driving our findings. While our findings

thus far are consistent with congestion, this pattern of results could also arise due to

changes in the composition of patients on extreme heat days. If, for example, less-sick

patients show up to the ED on hot days, it is perfectly reasonable for EDs to admit

fewer patients to the hospital and to send more home. Fortunately, we can examine this

directly based on measures for the severity of illness (Hoe, 2022). In fact, we find that

the severity of illness in the ED increases with temperature. Furthermore, those sent

home on extreme heat days are significantly less healthy than those being discharged on

cooler days. By contrast, while those admitted to the hospital from the ED are among

the sickest patients in that department, those transferred to the hospital are no more
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infirm than those already admitted there. Congestion is the most plausible explanation

for these results.

The final piece of the puzzle is estimating the impacts of this congestion. Inside the

hospital, this estimation is relatively straightforward. Since the composition of illness

severity does not change, we can simply look at excess mortality for hospitalized patients.

We find that experiencing one day with maximum temperature exceeding 34◦C leads to

a 5% increase in excess deaths. These deaths include the direct physiological impacts

of heat as well as any indirect effects arising from hospital congestion. Separating these

channels is trickier than it might sound because heat can impact many conditions often

not classified as heat-related, ranging from accidents to heart attacks (Park and Pankratz;

Drescher and Janzen, 2024).2 To parse these indirect effects, we examine the impact

of heat shocks on patients already admitted to the hospital (conditional on heat when

admitted). Our analysis suggests that one day over 34◦C also increases mortality for this

population by 5%, revealing large spillover effects. As an additional test, we limit our

attention to cancer patients, who should not be impacted by temperature conditional

on hospital admission, and find a similar increase, underscoring the spillover effects

generated by heat-driven overcrowding in the hospital.

Assessing the health consequences for those sent home from the ED is more chal-

lenging, as we cannot follow patients once they leave the healthcare system. We can,

however, use vital statistics data to measure the number of deaths that occur on hot

days in specific settings. Although we find that deaths increase both inside and outside

of hospitals, we see a larger relative increase in deaths outside the hospital. While we

cannot know whether these deaths occur among patients sent home from the ED or

those discharged early from inpatient care, this result is consistent with crowding im-

pacts: more severe patients are sent home from the ED, those admitted into inpatient

care have shorter stays, and deaths disproportionately increase outside the hospital sys-
2Indeed the public health literature emphasizes that there are no standardized protocols for report-

ing heat-related illness (Vaidyanathan et al., 2019), and heat stress can exacerbate preexisting health
conditions, often resulting in conditions being recorded under different diagnoses like renal failure or
cardiovascular events (Schulte and Chun, 2009; Bell et al., 2016).
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tem. Taken together, these results suggest that the additional crowding caused by higher

temperatures leads to increased mortality.

Our paper builds upon the extensive literature focused on the health impacts of

climate change (see reviews by Basu, 2009; Ye et al., 2012; Bunker et al., 2016) to reveal

a new channel through which those impacts may arise. In so doing, it also illuminates

a new approach to climate adaptation. While several studies have explored the adap-

tive role of air conditioning (see reviews by Kahn, 2016; Fankhauser, 2017; Owen, 2020;

Deschênes and Greenstone, 2011; Barreca et al., 2016), our study highlights investments

in healthcare infrastructure and patient management as another tool for adapting to

warmer temperatures. Our paper is also closely related to recent studies that examine

the impact of non-heat-related surges in hospital demand on healthcare quality. For

example, Hoe (2022), who focuses on external injuries, finds that shocks to UK hospital

trauma and orthopedic departments lead to a reduced quality of care within those depart-

ments as measured by readmission rates. Gutierrez and Rubli (2021) utilize data similar

to ours from Mexico and show that surges in hospital demand due to an outbreak of

H1N1 influenza led to more in-hospital deaths for patients with other conditions. Lastly,

Guidetti et al. (2024) examine the impacts of health shocks due to spikes in pollution on

pediatric hospitalizations in Sao Paulo, Brazil, and find that higher levels of pollution

generate congestion that impacts the health of children with respiratory conditions and

decreases admissions for non-respiratory conditions. We extend this work by broadening

our purview to spillovers between EDs and the entire hospital system, as well as to the

health impacts on those outside the hospital system.

5



1 Background and data

1.1 The Mexican healthcare system

The Mexican healthcare system is fragmented and multi-tiered.3 People obtain insurance

through the private sector (∼2-3% of the population), social insurance from the Mexican

Social Security Institute (IMSS) and the Institute for Social Security and Services for

State Employees (ISSSTE) (∼40–45%), and the safety net SP program (∼40–45%).4

Approximately 14% of the population is uninsured, although they are technically eligible

for SP but have not enrolled. IMSS and ISSSTE are for formally employed individuals in

the private and public sectors, respectively, with funding provided by contributions from

employees and employers along with government subsidies. SP is safety net insurance

for those who are informally employed or unemployed, with funding provided entirely by

the government.

In line with the different tiers of insurance, healthcare services are highly frag-

mented. Privately insured individuals seek care in a private and largely unregulated

market. IMSS and ISSSTE "organize, provide and regulate most of their own health ser-

vices through vertically integrated, national organizations" (Block et al., 2020). Those

with SP or without insurance obtain care from facilities managed directly by the MoH.5

Resources at Mexican healthcare facilities are highly constrained, especially in

more rural areas and for public facilities. Overall, Mexico spends 5.5% of its GDP on

healthcare, compared to an OECD average of 9.2%. Half of this expenditure is out-of-

pocket even though fewer than 2% of the population has private insurance. Mexico also

faces a notable deficit in its medical workforce, with a ratio of 2.5 physicians per 1,000

inhabitants, which is considerably lower than the OECD’s recommended threshold of 3.2.

This shortfall extends to nursing personnel, where shortages are even more significant:
3For more detail, see Block et al. (2020).
4SP was superseded by the Institute of Health for Welfare (INSABI) in 2020. Our analysis, however,

ends in 2019 to avoid confounding due to COVID-19, so we refer to SP throughout.
5Care at EDs, however, is not fragmented. Patients can freely enter any ED regardless of insurance

status.
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only 2.9 nurses per 1,000 people, significantly below the OECD’s recommendation of

8.8 (OECD, 2023). Access to medical technology is also limited. For instance, Mexico

has only 2.6 MRI machines per million inhabitants, compared to an OECD average of

15.6 (Block et al., 2020). As a result, long wait times and a lack of medical supplies are

common concerns, and any patient surge is likely to further stress an already constrained

healthcare system. It is worth noting that Mexico is quite representative of the type

of healthcare access constraints that inhabitants of most countries face. For example,

Mexico’s density of doctors per capita ranks 47 out of 96 countries with available data

(OWID, 2021).

1.2 Data

To evaluate the relationship between temperature, healthcare usage, and health out-

comes, we combine public hospital administrative records from the MoH and mortality

records for the entire population with weather data for the years 2012–2019. Our use of

MoH-managed hospitals, which provide healthcare to the uninsured and those enrolled

in SP, concentrates our focus on healthcare usage by the lower and middle part of the

income distribution. The mortality records come from death certificates and thus reflect

the entire population.

Healthcare utilization and mortality data

Our study draws on patient-level records from the complete network of hospitals in

Mexico’s non-contributory public healthcare system, overseen by the MoH, for the years

2012–2019. Although many hospitals in our sample operate an ED that subsequently

admits patients for inpatient care, data for these two care phases are recorded separately

by distinct information subsystems: the Emergency Department Subsystem and the

Hospital Discharge Subsystem. The data come from 916 EDs and 857 hospitals and

are plotted in Figure 1; these data account for the healthcare of 57% of the national

population.
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(a) Emergency departments

(b) Hospitals with inpatient services

Figure 1: Distribution of hospitals

Notes: This figure illustrates the distribution of hospitals in our sample. Top: Data from 916 EDs in
Mexico for 2019. Bottom: Data from 857 hospitals with inpatient services in Mexico for 2019

In both subsystems, detailed diagnostic information is recorded for each patient,

including a primary diagnosis and up to 6 secondary diagnoses. Specialized coders

are tasked with converting handwritten diagnostic notes into standardized 4-digit codes

based on the International Classification of Diseases, Tenth Revision (ICD-10). ICD-10
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comprises over 70,000 possible diagnosis codes, but the Mexican health system utilizes

only the first 4 digits, delineating 9,795 distinct categories.

Although we have detailed information on the patient’s diagnosis, we primarily

focus our analysis on all ED and hospital visits regardless of cause (we rely on diagnosis

to define illness severity as described below). The reason for this choice is twofold. First,

it is difficult to identify specific illnesses related to heat. Very few patients are coded

as having heat-related illnesses, such as heat stroke or exhaustion.6 Instead, heat often

exacerbates conditions that do not have a heat-related code. For example, heat stresses

the cardiovascular system by making the heart work harder, which increases the risk of a

heart attack (Sun et al., 2018; Ebi et al., 2021). Epidemiological studies have shown that

heat increases ED and hospital visits for conditions related to the heart (Wettstein et al.,

2018), kidney (Hansen et al., 2008), lungs (Michelozzi et al., 2009), mental health (Liu

et al., 2021), and more (Ebi et al., 2021). Furthermore, as shown in Appendix Figure A.2,

excluding patients with explicitly heat-related codes results in nearly identical results.

Second, as discussed earlier, our goal is to estimate not only the direct impacts of heat but

also the spillover effects that arise through resource constraints. The presence of these

spillover effects suggest heat could impact any condition sensitive to resource constraints.

By considering all admissions regardless of diagnosis, we capture both the direct and the

indirect spillover effects.

Both datasets record the discharge status of each patient, which we use to explore

how patients flow through the healthcare system. For the ED, the following five options

exist: 1) sent home; 2) hospitalized; 3) referred to another hospital; 4) exit without

discharge; and 5) deceased.7 The following three discharge options exist for the hos-

pitalized: 1) sent home, 2) transferred to another facility, and 3) deceased. The data,

however, are not linked, so we are unable to analyze the mortality outcomes from ED

admissions.
6Monitoring of heat-related illness through specific diagnosis codes has been highlighted as a global

problem (Harduar Morano and Watkins, 2017; Fox et al., 2019).
7For administrative reasons, very few patients die in the ED. They are transferred to the hospital

before being pronounced dead.
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The municipality of each facility and the date of admission are reported in both

sets of data, which enables us to merge the weather data. We aggregate individual visits,

which consist of approximately 70 million ED and 22 million hospital visits during our

study period,8 to the facility-day level. This results in 1,865,622 ED-days and 2,141,109

hospital-days.

Severity of illness. We use the hospital data to calculate a measure of illness severity

to understand the composition of patients admitted to the ED and hospital on any given

date. Following Hoe (2022), we leverage the availability of the universe of deaths and

admissions within the SP over almost a decade and define severity ŝ as the estimated

in-hospital mortality rate at the national level for each diagnosis code, conditional on age

and sex.9 Since there are nearly 10,000 4-digit ICD-10 codes, we calculate this rate based

on groupings of the first 3 digits of the ICD-10 codes, following the disease categories

listed in the ICD-10 manual. For example, codes A00-A09 indicate "intestinal infectious

disease," A15-A19 indicate "tuberculosis," and A20-A28 indicate "certain zoonotic bac-

terial diseases." This results in a total of 290 disease categories for which we calculate

mean mortality rates. We assign this severity measure to each patient based on age, sex,

and diagnosis code determined at admission. We aggregate these data to the hospital-

date level by taking an average of patients admitted for each facility and date in our

data frame.

Excess deaths. To investigate the contribution of heat to additional deaths in the hos-

pital, we employ an excess mortality measure comparable to the risk-adjusted mortality

measure monitored by the NHS (NHS, 2024). Specifically, we define excess mortality

as min{0,1(m) − ŝ}, where 1(m) = 1 if the patient died and 0 otherwise, and ŝ is the

severity assigned to each patient as defined above. In this definition, excess mortality

equals zero for patients who do not die in the hospital and 1 – ŝ for patients who do. As
8The ED visits are split evenly between SP and uninsured patients, while approximately 75% of the

hospital visits are patients with SP.
9More formally, we perform a Poisson regression of the probability of death on the diagnosis cate-

gories, with age and sex fixed effects. Severity is the predicted likelihood of death estimated using the
coefficients from this regression.
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with the ED and hospital data, we aggregate excess deaths to the hospital-date level.10

Mortality data

We utilize a comprehensive dataset comprising all death certificates in the country from

2012 to 2019, regardless of insurance status. We continue to use all deaths regardless of

cause in order to capture the direct and indirect effects of heat. These records provide

the date and location of each death, enabling us to link these observations to the relevant

weather data. Furthermore, they provide the setting of each death, such as a private

hospital, a public hospital, a public space, or a residence, which we will use to analyze

events that happen outside of the healthcare system. This enables us to explore the

impacts of heat on mortality outcomes regardless of the setting, capturing patients who

may be sent home from the ED or hospital but still succumb to their illness.

Weather data

For the weather data, we use the Daymet reanalysis data product from NASA’s Oak

Ridge National Laboratory (ORNL) (Thornton et al., 2021). These data are based on

statistical models that interpolate and extrapolate from weather stations, thus enabling

weather calculations in areas where stations do not exist. Daymet data include daily

measures of minimum and maximum temperature on a 1km x 1km gridded surface.

We average all grids within a municipality on a daily basis to obtain the average daily

maximum temperature and assign this to each ED and hospital at the daily-municipality

level. Figure 2 (a) displays the distribution of daily maximum temperatures for hospitals

at the 10th, 25th, 50th, 75th and 90th percentiles of the historical average maximum

temperature. Most hospitals experience daily maximum temperatures between 10 and 40

degrees, with considerable variation in median temperatures and year-round variability

across percentiles.
10The risk-adjusted mortality rate (NHS, 2024), calculated as the ratio between the actual and the

expected rate given patient case mix as a measure of excess deaths, is designed to capture annual
variation. On a given year, there are no hospitals with zero expected deaths, which makes a ratio an
adequate measure. To capture daily variation, a ratio would generate numerous missing values because
on many days, there are zero expected deaths given patient composition. For this reason, we measure
this gap as a subtraction rather than as a ratio.
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1.3 Descriptive statistics

Summary statistics for ED visits are shown in the first panel of Table A.1. The average

number of ED visits is 39.65 daily, but considerable variability exists, with a standard

deviation of 40.14. This variability is partly due to changes in visits over time within an

ED, as reflected by the standard deviation within EDs of 7.02, but largely due to the

sample consisting of EDs of different sizes. This reflects the diverse contexts in which

the Mexican healthcare system operates and the different capacities of these facilities.

The nature of this variation is highlighted in Figure 2 (b), which shows the distribution

of daily ED visits separately for EDs at the 25th, 50th and 75th percentile of the mean

daily admissions.

In terms of discharge status, the majority of ED patients (73.43%) are sent home,

followed by hospitalization (12.52%) and referral to another hospital (10.77%). Very

few patients exit without an official discharge (0.47%) (0.23%) or have missing discharge

information. The mean severity of ED patients is 0.02, indicating that the severity of

illness for the mix of diagnosis, age and sex of patients admitted to the ED corresponds

with a 2% mortality rate for that same mix in the hospital. Appendix Figure A.1 shows

that while there are some outliers, the severity for most ED patients ranges between 0

and 0.06.

Shown in the second panel of Table ?? are descriptive statistics on hospital admis-

sions. Admissions average 12.37 per day, again with considerable variability driven by

daily factors as well as hospital features, with the third panel of Figure ?? reflecting the

latter. Patients stay, on average, 3.5 days in the hospital. When they leave, most pa-

tients are deemed sufficiently healthy to be sent home (92.79%), followed by transferred

to another facility (2.44%) and deceased (1.61%).11 The severity score for the inpatient

services is 0.02 (standard deviation = 0.03), similar to those in the ED, with an excess

mortality average of 0.23 (standard deviation = 0.63). Appendix Figure A.1 shows that

the severity for most patients ranges between 0 and 0.1.
11The remaining patients leave without a formal discharge.
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The county-level mortality data indicate a mean of 3.02 deaths per day (standard

deviation = 5.06). These deaths are distributed across various settings, with 23.17%

occurring in public hospitals, 1% in private hospitals, and the rest occurring outside of

hospitals: at home, in a public space or at an unknown location.

(a) Maximum temperature, hospitals

(b) Daily ED visits (c) Daily hospital admissions

Figure 2: Descriptive statistics

Notes: Data from 916 EDs and 857 hospitals with inpatient services in Mexico between 2012 and 2019.
Unit of observation: hospital-day, with cohorts based on the date of admission of the patient. Panels a)
and b) depict the 10th, 25th, 50th, 75th, and 90th percentile of the distribution of total patient influx
for ED visits and hospitalizations, respectively. Panel c) presents the distribution of the daily maximum
temperature for the 10th, 25th, 50th, 75th, and 90th percentile of the distribution of average annual
temperature for the period of observation.

2 Empirical methodology

The initial focus of our empirical strategy is to estimate the causal effect of the temper-

ature realized on a given day on ED and hospital visits in a particular location. Given
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that daily ED and hospital visits are count data, we estimate a Poisson pseudo-maximum

likelihood model (PPML). The PPML point estimates are consistent as long as the condi-

tional mean is correctly specified, irrespective of the distribution of the outcome or errors

(Gourieroux et al., 1984). PPML models also readily accommodate fixed effects without

an incidental parameters problem (Correia et al., 2019). Furthermore, the PPML esti-

mator performs well with a large number of zeros and over- or under-dispersion in the

data (Silva and Tenreyro, 2011).12

Our baseline model for ED and hospital visits is specified according to the condi-

tional exponential mean function in equation 1, where Y is the number of ED or hospital

visits on date d in hospital h in municipality m:

E[Yhcd|
7∑

l=0

(f(tmaxhcdl
)) , ρh,Ωd] =

exp

(
7∑

l=0

9∑
b=1

βb1(tmaxhcdl
∈ (tb, tb]) + ρh + Ωd + εhcd

)
(1)

The key variable of interest is tmax, which measures the average daily maximum

temperature in a municipality.13 In line with previous work, we allow for a nonlinear

effect of temperature by using a series of indicator variables for each 2◦C, with 22–

24◦C serving as the reference. Thus, we interpret the coefficient β of bin b as the

contemporaneous impact of the maximum temperature in that bin relative to 22–24◦C.

This allows each 2◦C bin to have an independent impact on outcomes. Based on the

distribution of temperature, we specify ≤18◦C as the lowest bin and ≥34◦C as the

highest. Since temperature impacts may arrive with delay, we also include 7-day lags
12Our results are robust to using a linear fixed effects regression model.
13In Section A.2, we show that our results are robust to using wet-bulb temperature, a measure

that attempts to account more fully for heat stress. The calculations of wet bulb temperature are
based on the variables of temperature (degrees C) and water vapor pressure (Pa) using the PsychroLib
library in Python. This library contains functions for calculating the thermodynamic properties of gas–
vapor mixtures and standard atmosphere suitable for most engineering, physical and meteorological
applications. Most of the functions are an implementation of the formulae found in American Society of
Heating and Engineers (2017).

14



of these temperature bins, l ∈ 1, 7.14 As we demonstrate below, the contemporaneous

effects are considerably stronger than any lag, so we only show the full set of temperature

bin coefficients for same day temperature.

Our model includes several fixed effects to aid in the identification of temperature

impacts. Consistent with the standard approach in the climate economics literature (Dell

et al., 2014; Deschenes, 2014; Barreca et al., 2016; Mullins and White, 2019), we include

hospital-specific fixed effects (ρh) to compare changes in temperature within an area with

changes in ED or hospital visits. We include several additional fixed effects, denoted by

Ωd, to control for other important factors affecting ED and hospital visits. These include

day-of-the-year (doy) fixed effects to adjust for seasonality, municipality-by-year fixed ef-

fects to control for annual trends specific to each municipality, and day-of-the-week (dow)

by year fixed effects to capture evolving intra-week patterns. The identification assump-

tion is that after accounting for baseline factors such as annual trends and seasonality,

the remaining fluctuations in daily temperature at a given facility are exogenous. The

error term, εhcd, includes both an i.i.d. and a municipality level component. The munic-

ipality level component accounts for the assignment of temperature to all hospitals at

that level and also allows for serial correlation within municipalities (and the hospitals

nested within them). We cluster standard errors at the municipality level to allow for

these features.

Although our initial focus is on healthcare utilization, the second, and more novel,

focus of our empirical strategy explores transitions within the health care system and

their implications for patient health. To do so, we consider several additional outcomes,

such as cases transferred from the ED to the hospital and excess deaths inside the

hospital, using the same econometric model but with these different dependent variables.

When using vital statistics data to explore mortality for the entire nation, the model is

modified to include municipality fixed effects instead of hospital fixed effects.
14We also employ specifications with 30-day lags of temperature and find our results do not appre-

ciably change (results available upon request).
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3 Results

3.1 Emergency department and hospital visits

The first set of results documents the relationship between temperature and either ED

or hospital visits. These results set the stage for our subsequent analyses and also serve

as a validation exercise, since previous studies document heat impacts on healthcare

utilization.

The results show that, consistent with previous studies, higher temperatures lead

to increased health care utilization. Figure 3 Panel (a) shows the results for ED visits.

We find a monotonically increasing relationship between temperature and ED visits that

is statistically significant for all temperature bins. When temperature reaches the highest

bin of ≥34◦C, we estimate an additional 3.01 ED visits compared to the number given

a temperature of 22–24◦C. From a mean of ∼40 daily visits, this translates to a 7.6%

increase. The effects decrease as we move to colder temperatures, with an estimate of 2

additional visits at 30–32◦C and 1 at 26–28◦C. The impacts do not level out with cooler

temperatures, as a decrease in visits occurs at each temperature bin below 22–24◦C.

At first blush, this pattern seems surprising, but it is consistent with recent evidence

in California (Gould et al., 2024). The most likely explanation for this pattern is that

heat produces a change in health care seeking behaviors (White, 2017), in addition to

its acute health impacts.

Turning to hospital visits in Panel (b), we also find statistically significant increases

resulting from higher temperatures. At the highest temperature bin of ≥34◦C, we esti-

mate an 4.2% impact, which translates into roughly .45 additional hospital admissions.

The estimates are progressively smaller as temperature decreases, with a convex shape

consistent with a U-shaped relationship, noting that we only observe higher temperatures

in the Mexican setting.

As previously mentioned, we include 7 lags of the temperature bins in our econo-

metric model. To display the impact from lags 1–30, Figure 4 shows the coefficients
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(a) ED visits (b) Hospitalizations

Figure 3: Temperature and number of visits per day

Notes: ED visits between 2012–2019. Econometric specification includes contemporaneous and 7-day
lags of 9 temperature bins. Omitted category: 22–24 ◦C. Controls include day-of-the-year, municipality-
by-year, day-of-the-week by year and hospital fixed effects. Standard errors are clustered at the munic-
ipality level. Shaded area represents 95% confidence intervals.

for contemporaneous temperature and for each lag for the highest temperature bin only.

Panel (a) shows that, for ED visits, the impact of contemporaneous temperature far

outweighs that of any of the lags, although the impacts from lags 1 to 3 are statistically

significant. The coefficient of 3 for same day is followed by a 0.5 coefficient for 1-day lag,

a considerable drop in magnitude, and only gets smaller from there. A similar pattern

arises for hospital visits, shown in Panel (b), though only the coefficient from lag 1 is

statistically significant. For the remaining analyses, we continue to employ the lagged

specification but only display the estimates for contemporaneous temperature given its

dominance in impacting healthcare utilization.

3.2 Transitions within the health care system

The above results demonstrate an increase in both ED and hospital visits when temper-

ature increases but highlight an important gap in care. Focusing solely on the highest

temperature bin, an additional 3 patients visit the ED when temperatures exceed 34◦C,

whereas only 0.5 additional patients enter the hospital. What happens to these extra

patients? We investigate this question using the discharge status of ED patients.

One possibility is that hospitals admit fewer patients from outside of the ED (e.g.
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(a) ED visits (b) Hospitalizations

Figure 4: Temperature and number of visits per day

Notes: ED visits between 2012–2019. Econometric specification includes 30 lags of 9 bins; only
the hottest bin (≥ 34◦C) is plotted. Omitted category: 22–24 ◦C. Controls include day-of-the-year,
municipality-by-year, day-of-the-week by year and hospital fixed effects. Standard errors are clustered
at the municipality level. Shaded area represents 95% confidence intervals.

direct admissions for elective or non-urgent procedures) to free up space to transfer ED

patients into the hospital. We explore this possibility by looking at the number of ED

patients discharged directly to the hospital. The results, shown in Panel (a) of Figure 5,

demonstrate an increase in discharges to the hospital as temperatures increase. When

temperatures exceed 34◦C, we find a statistically significant increase of 0.28 patients

admitted to the hospital. This implies that part of the increase in hospital visits comes

from patients admitted through the ED but that another proportion of the increase arises

from direct admissions, which could be transferred from other EDs or directly admitted

from consultation. Moreover, these findings still do not fully explain what happens to

the additional patients admitted to the ED.

Although the number of hospital admissions from the ED increases on hot days,

the probability of being hospitalized decreases, as shown in Figure 5, Panel (b). At the

highest temperature bin, we estimate a .35 percentage point decrease in the probability

of being admitted to the hospital. This amounts to a ∼ 3% decrease from the baseline

hospitalization rate of 12% among ED patients. Panel (c) shows that more patients are

discharged home as heat increases.15 When temperatures exceed 34◦C, we estimate an
15The third major discharge category is transferred, but we find no effect of temperature on this

group.
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increase of 0.5 percentage point in the probability of being sent home. In fact, we find

that the increase in patients sent home on hotter days (Panel (b)) represents almost all

of the additional ED admissions, shown in Figure 3. Together, these results suggest that

hospitals are unable to accommodate the additional patients admitted to the ED in their

inpatient or outpatient units and end up sending these patients home.

(a) Number of ED patients hospitalized (b) Number of ED patients sent home

(c) Share of ED patients hospitalized (d) Share of ED patients sent home

Figure 5: Changes in triage of ED patients

Notes: ED visits between 2012–2019. Econometric specification includes contemporaneous and 7-day
lags of 9 temperature bins. Omitted category: 22–24 ◦C. Controls include day-of-the-year, municipality-
by-year, day-of-the-week by year and hospital fixed effects. Standard errors are clustered at the munic-
ipality level. Shaded area represents 95% confidence intervals.

A similar phenomenon happens within the hospital, with more patients being dis-

charged on hot days, suggesting that hospitals respond to this congestion by decreasing

length of stay. Figure 6 shows that the number of discharges increases by ∼0.07 patients

when a day’s maximum temperature reaches above 34◦C, an increase that corresponds

to ∼1% of daily patient inflow.16

16p < 0.1 for the 28–30◦C and 32–34◦C. p < 0.05 for 30–32◦C.
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Figure 6: Temperature and patient discharges

Notes: Hospitalizations between 2012–2019. Econometric specification includes contemporaneous and
7-day lags of 9 temperature bins. Omitted category: 22–24 ◦C. Controls include day-of-the-year,
municipality-by-year, day-of-the-week by year and hospital fixed effects. Standard errors are clustered
at the municipality level. Shaded area represents 95% confidence intervals.

3.3 Patient composition

One explanation for the increase in patients being sent home from the emergency and

inpatient departments could be patient composition. If less-sick patients show up to the

ED on hot days—perhaps driven by behavioral factors17—it is perfectly reasonable for

EDs to send more patients home. To explore this possibility, we estimate the impact of

temperature on the severity of ED patient illness. Recall that severity is the mortality

rate based on the diagnosis code, by age and sex, assigned to each patient at admission.

The results, shown in Figure 7, reveal that patient severity increases with temperature.

When temperature exceeds 34◦C, there is a statistically significant 1% increase in patient

severity.18. Compared to days with milder temperatures, on average, sicker patients show

up at the ED as temperatures rise.

Heterogeneity in patient severity could arise whereby more severely ill patients

are admitted to the hospital and those with a less severe illness are sent home. When

we specifically examine the severity for patients discharged home, shown in Panel (c),
17White (2017) finds increased treatment-seeking behavior on hotter days in EDs in California.
18We report exp(β − 1) instead of the marginal effects for ease of interpretation for severity and

excess mortality results, as the original units are less intuitive. This transformation represents the
percent change in the severity of excess mortality for the maximum temperature falling in a specific bin
relative to that for the 22–24◦C bin.
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however, we produce nearly the same pattern of results. The average patient sent home

(instead of being admitted) is also sicker on hotter days. This pattern supports a “quicker

and sicker” scenario in which patients are discharged more rapidly despite being sicker,

a finding consistent with constrained hospital resources. We also explore the severity

of illness among patients admitted to the hospital, shown in Panel (b). We find that

patient severity is unrelated to heat, with no clear pattern of results. Combined with the

previous results, this suggests that the marginal patient transferred from the ED to the

hospital is a more severe case on a hotter day than the average ED patient on a cooler

day, but comparable to the average severity for patients in the hospital. It also indicates

that the increasing admissions to hospitals on hot days consists of patients with a similar

health status, thus placing significant strain on the hospital system.

3.4 Mortality impacts

We have thus far established that heat generates an increased threat to the patient who

receives health care, either through more crowding at the hospital, which diminishes

available resources, or more patients being sent home despite being sicker. To investigate

the mortality impacts of this congestion, we conduct three tests of quality of care: i)

we look at excess mortality for hospitalized patients, ii) we examine the impact of heat

shocks on patients already admitted to the hospital, controlling for heat when admitted,

and iii) we focus on excess mortality among cancer patients. Recall that heat leads

to an increase in admitted patients but does not change the composition of patients.

Therefore, if heat leads to an increase in mortality for hospital admits, the increased

crowding from the additional admissions is the likely explanation.

For this test, we examine the impact of temperature on excess deaths. Recall that

we define excess deaths as min{0,1(m) − ŝ}, where 1(m) = 1 if the patient dies and

0 otherwise, where ŝ is the severity assigned to each patient through their diagnosis

and demographic characteristics. The results, shown in Figure 8, Panel (a), indicate

that excess deaths increase with temperature. Specifically, we find that one day with a
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(a) Severity, ED visits (b) Severity, hospitalizations

(c) Severity, ED visits sent home

Figure 7: Patient composition

Notes: ED and hospital visits between 2012–2019. The dependent variable is the average patient severity
for (a) all ED visits, (b) all hospitalized patients and (c) all ED patients who were sent home. Severity
at the patient-level is measured as the estimated in-hospital mortality rate at the national level for
each diagnosis code, conditional on age and sex. Econometric specification includes contemporaneous
and 7-day lags of 9 temperature bins. Omitted category: 22–24 ◦C. Controls include day-of-the-year,
municipality-by-year, day-of-the-week by year and hospital fixed effects. Standard errors are clustered
at the municipality level. Shaded area represents 95% confidence intervals.

maximum temperature exceeding 34◦C leads to a 5% increase in excess deaths. These

deaths include the direct physiological impacts of heat as well as any indirect effects

arising through hospital congestion.

Disentangling the indirect effects of heat exposure from its direct impacts is par-

ticularly challenging because heat exacerbates a wide range of health conditions that

are not always classified as heat-related. For instance, elevated temperatures can aggra-

vate preexisting conditions such as cardiovascular diseases or renal failure, often leading

to diagnoses unrelated to heat stress (Schulte and Chun, 2009; Bell et al., 2016). Com-

pounding this issue, the lack of standardized protocols for reporting heat-related illnesses
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further obscures the link between heat and health outcomes (Vaidyanathan et al., 2019).

To address these complexities, we focus on patients already admitted to hospitals and

evaluate the effect of heat shocks on their outcomes, controlling for heat exposure at

admission. Our findings reveal that one day exceeding 34◦C also increases in-hospital

mortality by 5% among this group (Panel (b)), indicating that spillover effects amount

to at least half of the impact of heat on excess mortality. As an additional test, we

limit our attention to cancer patients19, who should not be impacted by temperature

conditional on hospital admission, and find a similar increase (Panel (c)), underscoring

the spillover effects generated by heat-driven overcrowding in the hospital.

One possible explanation for these patterns could be that heat impacts physician

care. Just as patients suffer from stress due to heat, physicians may experience the

same stress. Although we are unable to directly test this, nearly all hospitals have

air conditioning (AC) 20, which greatly minimizes heat exposure and the impacts of

heat on healthcare providers (Barreca et al., 2016). Furthermore, while the level of

residential AC ownership is low in Mexico, healthcare providers are drawn from higher

socioeconomic strata and are more likely to own them (Davis et al., 2021). Regardless,

given the statistically significant contemporaneous effect of temperature, residential AC

is less likely to be a contributing factor to the performance of healthcare providers. While

we cannot rule out other possible explanations, our results are consistent with crowding

as a mechanism behind these results.

3.4.1 Mortality outside the hospital system

These results suggest that patients who stay within the healthcare system experience

increased mortality due to the heat. What about discharged patients? As shown above,

patients with more severe conditions are more likely to be sent home on hotter days.

Given that so few SP and uninsured patients are likely to have AC, it is probable that this
19We classify as cancer patients those who have their main diagnosis code within the ICD categories

C00-D49 (Neoplasms).
20Using Mexico’s information requests platform (Plataforma Nacional de Transparencia), we sent

information requests to each of the 32 states asking about their hospitals’ climate control infrastructure.
We obtained information for 200 hospitals, and 197 of them had AC.
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(a) Excess mortality (b) Excess mortality, shock on d+ 1

(c) Excess mortality, cancer patients

Figure 8: Excess mortality

Notes: Hospital visits between 2012–2019. The dependent variable is excess mortality in response to (a)
temperature on the day of admission d and (b) temperature on the day after admission d+1, controlling
for temperature in d. Panel (c) shows excess mortality focusing exclusively on cancer patients (ICD
categories C00-D49). Severity at the patient level is measured as the estimated in-hospital mortality rate
at the national level for each diagnosis code, conditional on age and sex. Excess mortality is defined
as the difference between predicted and measured mortality, as defined in Section ??. Econometric
specification includes 7 lags of 9 bins. Shaded area represents 95% confidence intervals. Omitted
category: 22–24 ◦C.

lack of treatment increases their mortality. Although we do not observe the mortality

specifically for these patients, we observe it for the entire population along with the

setting of each death, enabling us to explore the potential role of the healthcare system.

We first estimate the overall municipality-level mortality effects of heat, which

serves to validate our model, since many previous studies estimate such a relationship.

Consistent with these studies, we find that higher temperatures increase mortality, where

a day that exceeds 34◦C leads to a statistically significant 0.17 increase in total deaths

(Figure 9). From a mean of 3.02, this indicates a 6% increase in mortality. The convex
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shape is also consistent with the U-shaped pattern found elsewhere.21

Given that we have established an expected relationship between temperature and

mortality, we next explore the setting of each death. We have shown that more deaths

occur in hospitals, but we have also shown that a disproportionately higher number

of patients are discharged home than admitted to the hospital. If this holds true for

patients with IMSS and ISSSTE, the other source of social insurance in Mexico, and

going home offers less protection from the heat than does the hospital, we would expect

a disproportionate increase in deaths at home relative to the increase in the hospital.

This pattern is supported by the results shown in Figure 9. Panel (a) indicates that

the proportion of deaths in a public hospital decreases by almost 1% when temperatures

exceed 34◦C, a 4% decrease from a sample mean of 23%. The proportion of deaths outside

of the hospital increases by approximately 1% (Panel (b)). Thus, the additional demand

on the healthcare system that arises from more patients seeking health care, and the

resulting decision to send most of these patients home, appears to have life-threatening

implications.

Figure 9: Temperature and daily deaths

Notes: Data from the universe of 2012–2019 death certificates. Econometric specification includes
contemporaneous and 7-day lags of 9 temperature bins. Omitted category: 22–24 ◦C. Controls include
day-of-the-year, municipality-by-year and day-of-the-week by year fixed effects. Standard errors are
clustered at the municipality level. Shaded area represents 95% confidence intervals.

21Appendix Figure A.6 also shows that we obtain a U-shaped pattern when we do not control for
lagged temperature, consistent with findings from the literature that, overall, mortality responds to cold
with some delay (for instance, when it is caused by infectious disease) (White, 2017).
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(a) Share in public hospitals (b) Share outside hospital system

Figure 10: Share of deaths by location

Notes: Data from the universe of 2012–2019 death certificates. Econometric specification includes
contemporaneous and 7-day lags of 9 temperature bins. Omitted category: 22–24 ◦C. Controls include
day-of-the-year, municipality-by-year and day-of-the-week by year fixed effects. Standard errors are
clustered at the municipality level. Shaded area represents 95% confidence intervals.

4 Conclusion

Using comprehensive data from Mexico’s largest healthcare subsystem, we provide the

first estimates of the impact of extreme heat that parses the physiological effects of heat

stress from the spillover effects on health outcomes arising due to hospital congestion.

Extreme heat leads to more ED and hospital visits. Due to capacity constraints, some

patients are turned away from the system, while those within the system experience

deteriorated care. An extra day at which the maximum temperature exceeds 34◦C leads

to a 6% increase in deaths within the hospital, with over half of these due purely to

congestion spillovers, and a 6% increase in deaths at home. Our results are robust to

varying lag structures, using wet-bulb temperature as the independent variable, and

excluding patients with heat-related diagnoses from the analysis.

To place these numbers in a broader context, we offer a simple back-of-the-envelope

calculation of potential impacts under climate change. Under a high-emission, low-

mitigation pathway, we project that the Mexican territory in 2050 will experience an

annual county-level average increase of 33 days with temperatures exceeding 34°C com-

pared to 2019 (Coupled Model Intercomparison Project Phase 6 (CMIP6), 2017; Haarsma

et al., 2016). By 2050, ED visits are projected to rise by 6%, and inpatient hospitaliza-
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tions are expected to rise by 16%. This will place increased strain on EDs and hospitals

and yield an increase of 1.7 additional deaths outside the hospital system out of 5.33

additional deaths for the average 2050 day. 22

This pernicious threat from extreme heat comes with a silver lining. Increasing ca-

pacity in the healthcare system is a novel arrow that can be added to the rather limited

quiver of climate adaptation tools. Moreover, these adaptation strategies can be imple-

mented in the short run by rescheduling patients and reallocating them across hospitals

(Gutierrez and Rubli, 2021) as well as in the longer run by creating more facilities for

emergency care, adding hospital beds, and increasing the number of healthcare profes-

sionals. How labor and capital investments in healthcare systems, as well as better surge

management tools, stack up against the rollout of AC, the other principal means for lim-

iting health harms from extreme heat (Barreca et al., 2016), will, of course, depend on

many contextual factors, not least of which are income, existing levels of infrastructure

and expected changes in the frequency and spread of extreme heat within and across

countries. Insofar as AC remains a private good while healthcare systems serve a broader

public, they also have very different distributional consequences.

To fix ideas, the starting salary for a nurse in India in 2017 was US $10,909, while

in the US, it was US $55,969 (George and Rhodes, 2017). Even after adjusting for

purchasing power parity, the costs in the US are 1.8 times higher than those in India.

At the same time, the feasibility of large-scale residential AC penetration in a place

like India is greatly hampered by electricity reliability issues. Indeed, rural households

report an average of 11 hours of outages every day (Aklin et al., 2016). Even within

Europe, where electricity reliability is not a concern, the cost of household electricity

in, e.g., Ireland is more than triple the price in Norway and twice that in Spain (sta,

2023). At the same time, the average Norwegian nurse is paid 10% more than nurses
22We utilize the SSP5-8.5 scenario, which assumes radiative forcing increases of 8.5 W/m² relative

to preindustrial levels. Gridded daily temperature estimates for 2050 were produced using the delta
method for bias correction. Implicit in our extrapolation using 2019 data except for temperature is the
assumption that healthcare infrastructure grows in line with population while adaptation levels, such as
AC adoption, remain unchanged from 2012–2019. Appendix Figure A.8 shows that despite a handful of
regions observing minimal or negative temperature changes, the broader trend is a large rise in extreme
heat exposure. Appendix Tables A.2 and A.3 show projected changes in our outcomes of interest.
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in Ireland and 60% more than his or her counterpart in Spain (Yanatma, 2023). The

optimal adaptation strategy, which equates the marginal rate of technical substitution

between adaptation technologies and practices, will clearly vary across these settings.

This calculus is further complicated by potential nonlinearities in the costs and

benefits of each technology. Are there returns to scale in rolling out a residential AC

program in countries with very low penetration? How do these returns to scale compare

to those in healthcare infrastructure within and across cities and countries? Are there

extreme temperatures at which the protective effect of AC or healthcare services is

no longer effective? How might these estimates vary under climate change when the

frequency of these extreme events is more likely to increase? Do the co-benefits of

greater comfort from AC and greater healthcare access on cooler days significantly alter

these welfare calculations? Together, these questions comprise a rich agenda for future

research.
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A Online Appendix

A.1 Descriptive statistics

Mean SD Min Max Within SD
(1) (2) (3) (4) (5)

Panel A: Emergency Departments
ED visits per day 39.65 40.14 0 5889 07.02
Patients sent home 29.16 31.99 0 5784 14.44
Patients hospitalized 5.36 10.38 0 3779 4.08
Patients referred to another hospital 3.81 9.51 0 659 4.13
Exit without discharge 0.20 1.20 0 99 0.48
Daily deaths in the ED 0.06 0.31 0 50 0.17
Patients sent home (%) 73.43 27.74 0 100 17.12
Patients hospitalized (%) 12.52 16.87 0 100 10.07
Patients referred to another hospital (%) 10.77 19.88 0 100 11.69
Exits without discharge 0.47 3.04 0 100 1.69
Deaths in the ED (%) 0.23 3.39 0 100 1.12
Average severity 0.02 0.02 0 0.93 0.01
Panel B: Hospitals
Hospital admissions per day 10.53 14.58 0 286 4.46
Length of stay (days) 3.50 5.96 0 365 3.11
Reason for leaving: improvement 9.86 13.83 0 284 4.27
Patients transferred out 0.12 0.48 0 37 0.30
Reason for leaving: voluntary 0.02 0.13 0 1 0.11
Daily deaths 0.23 0.68 0 19 0.35
Reason for leaving: improvement (%) 92.79 16.48 0 100 13.10
Patients transferred out (%) 2.44 10.32 0 100 7.93
Reason for leaving: voluntary (%) 0.56 6.06 0 100 4.53
Deaths (%) 1.61 5.48 0 100 4.43
Average severity 0.02 0.03 0 0.98 0.02
Excess mortality 0.23 0.63 0 16.10 0.31
Panel C: Deaths
Daily deaths 3.02 5.06 1 96
Deaths in public hospitals (%) 23.17 35.17 0 100
Deaths in private hospitals (%) 2.83 12.71 0 100
Deaths outside of hospitals (%) 73.99 37.05 0 100

Data from 916 EDs (A), 857 hospitals with inpatient services (B), and municipality-
level mortality data in Mexico between 2012 and 2019 (C). Unit of observation:
hospital-day (A and B) and municipality-day (C). Shares might not sum to 100 because
some patients flee the hospital or their outcome is not recorded. Column (5) presents
the within-hospital standard deviation (SD)

Table A.1: Descriptive statistics
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(a) ED visits (b) Hospitalizations

Figure A.1: Descriptive statistics: average severity

Notes: Data from 916 EDs and 857 hospitals with inpatient services in Mexico between 2012 and
2019. Unit of observation: hospital-day, with cohorts based on the date of admission of the patient.
Observations above the 99th percentile have been excluded

A.2 Robustness checks

(a) Heat-related admissions (b) Total admissions exclud-
ing heat-related

(c) Heat-related share

Figure A.2: ED admissions

Notes: Share of heat-related admissions is expressed in percentage points. The shaded area represents
95% confidence intervals. Omitted category: 22–24 ◦C. Lagged specification.
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A.3 Wet Bulb Temperature

(a) ER visits (b) Inpatient + outpatient (c) Total deaths

(d) Severity of illness among
incoming patients – Hospi-
talization

(e) Severity of illness among
incoming patients – ED vis-
its

(f) Severity of illness among
incoming patients – ED vis-
its sent home

Figure A.3: Main results using wet bulb temperature

Notes: Shaded area represents 95% confidence intervals. Omitted category: 13–15 ◦C. Lagged specifi-
cation.
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A.4 Point estimates when varying lag structure

A.4.1 ED visits per day

(a) No lags (b) 1 lag (c) 2 lags

(d) 5 lags (e) 10 lags (f) 15 lags

(g) 20 lags (h) 25 lags (i) 30 lags
Notes: Sample includes hospital data for daily ED visits from 2012 to 2019 in the universe of
MoH hospitals. Estimates come from a Poisson regression using contemporaneous and 30-day
lags of temperature bins. Controls include municipality-by-month, day-of-week, and year fixed
effects. Standard errors are clustered at the municipality level.

Figure A.4: ED visit estimations adding lags – Poisson
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A.4.2 Total deaths (death records) per day

(a) No lags (b) 1 lag (c) 2 lags

(d) 5 lags (e) 10 lags (f) 15 lags

(g) 20 lags (h) 25 lags (i) 30 lags
Notes: Sample includes municipality-level data for daily deaths from 2012 to 2019. The tem-
perature data during the day are used to construct treatment bins. Estimates come from a
Poisson regression using contemporaneous and 30-day lags of temperature bins. Controls include
municipality-by-month, day-of-week, and year fixed effects. Standard errors are clustered at the
municipality level.

Figure A.6: Total death estimations adding lags – Poisson
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A.4.3 2050 Projections

Figure A.8: Days above 34◦C in 2050, change from 2019

Source: Own elaboration with projections from CIMP6 SSP8 (Coupled Model Intercomparison Project
Phase 6 (CMIP6), 2017). Pixels in blue have negative changes. Min=-11
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ED Hospitalizations

ED Visits Share Hosp. Share Home Hospitalizations Excess Mortality

2019 41.86 12.77 74.16 13.00 0.27
2050 44.30 12.54 74.45 15.41 0.31
Diff. (2050-2019) 2.43 -0.22 0.29 2.40 0.04

Table A.2: Emergency Department and Hospitalization Outcomes

Source: Own elaboration with projections from CIMP6 SSP8 (Coupled Model Intercomparison Project
Phase 6 (CMIP6), 2017) and dose-response estimates from implementing Equation 1 using 2050 daily
temperature for Mexican counties.

Total deaths Deaths outside the hospital system
2019 3.02 1.65
2050 8.35 3.43
Diff. (2050-2019) 5.33 1.77

Table A.3: Mortality

Source: Own elaboration with projections from CIMP6 SSP8 (Coupled Model Intercomparison Project
Phase 6 (CMIP6), 2017) and dose-response estimates from implementing Equation 1 using 2050 daily
temperature for Mexican counties.
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